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SUMMARY 

A technique is described for the adaptation of a structured control volume mesh during the iterative solution 
process of the Navier-Stokes equations. The scalar equidistribution method is adopted, in conjunction with a 
Laplace-like grid solver to make a curvilinear body-fitted grid sensitive to local flow gradients. Hence, whilst the 
total number of grid nodes remains constant during a computation, their relative position is continuously adjusted 
to promote clustering of cells in regions where gradients are high. The focus of this work is in compressible 
aerodynamics, where such clustering would be desirable in regions containing shocks but also in boundary layers. 
The technique is three-dimensional and operates in a series of user-defined grid subdomains or patches. These 
patches act as reference frames within which grid activity takes place. Bi-cubic splines are extensively used to 
define the aerodynamic surfaces forming the calculation boundaries and to ensure that grid movement does not 
compromise surface integrity. The technique is applied to aerofoils, wing surfaces, transonic ducts and nozzles and 
a supersonic wedge cascade. Significant sharpening of both normal and oblique shock discontinuities is 
demonstrated over static grid simulations and with fewer overall grid nodes. The technique is successful in both 
inviscid and viscous (turbulent) simulations. 
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INTRODUCTION 

An adaptive grid capability is desirable in structured Navier-Stokes CFD codes which are used to 
compute the flow around aircraft flying at speeds close to that of sound. In this “transonic’ regime, 
although the aircraft may be flying subsonically, pockets of supersonic flow exist over parts of the 
airframe. These pockets usually terminate in a shock wave, which causes a drag increase through 
pressure modification but also by causing local boundary layer thickening and sepamtion. 
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The transonic regime is notoriously difficult to model mathematically, not only because of shocks, in 
effect a discontinuity in the flow field, but also because regions of the flow alternate between elliptic 
and hyperbolic behaviour. Since the equations characterizing the three-dimensional flow around 
aircraft can only be solved numerically, the discrete formulation adopted has to be able to satisfy all the 
above requirements. Specialized techniques have been developed in this area of compressible 
aerodynamics which can be broadly divided into two main categories: those which mainly deal with 
areas in the flow which are not significantly influenced by viscosity or turbulent mixing, mainly in 
external aerodynamics, and those where viscosity and turbulent mixing or recirculation are important, 
such as engine intakes, wakes, overexpanded rocket nozzles and supersonic impinging jets (for 
V/STOL aircraft). In the first category the inviscid Euler equations are solved. Good shock-capturing 
capability is achieved through the use of explicit time marching, with artificial viscosity used to 
suppress oscillations (see References 1 and 2). In the second category the full Navier-Stokes equations 
need to be solved, where a pressure-correction-type technique3 is usually adopted, modified for 
compressibility in various ways (see e.g. References 4-7). The present contribution is also concerned 
with Navier-Stokes solutions; however, a conventional upwind differencing scheme is employed as 
incorporated in the commercially available CFD code PHOENICS.' Dynamic grid adaptivity is used 
instead to 'sharpen-up' flow gradients and hence resolve flow discontinuities such as shocks where 
these occur. 

The partial differential equations characterizing the problem are discretized on a solution grid which 
is generally curvilinear with mesh lines made to follow the contours of the aerodynamic surface. 
Furthermore, the grid is structured so that grid lines originating at a boundary will terminate at a 
boundary (for unstructured adaptive grid methods see References 9 and 10). A control volume 
convention is adopted" whereby flow variables are assumed constant within any cell and are 
physically placed in the cell centroid. Velocity components are staggered with respect to pressure to 
prevent spurious pressure oscillations in the solution. 

Under these conditions the computational grid is gradually optimized as the field solution proceeds. 
An optimum grid is obtained when fine cells locate themselves in areas of high field gradients (e.g. 
shock waves, boundary layers) and moderate/large cells in areas of weaker gradients. Adaptive grids 
have long been in operation in unstructured grid FE-type codes where local grid refinement can be 
readily effected with the minimum of interaction with the main code structure. These codes have been 
used successfully in inviscid Euler calculations. For calculations where the effects of viscosity and 
turbulent flow cannot be neglected, Navier-Stokes solutions are necessary. The most widespread N-S 
codes in use in the aircraft industry are of the structured grid control volume type such as PHOENICS. 
These codes are often not specifically designed for transonic flow and unfortunately suffer from 
numerical smearing of shock discontinuities. The technique presented here offers a solution to this 
deficiency through dynamic grid refinement. 

The authors have developed a technique for the automatic adaption of structured body-fitted grids in 
three dimensions, based loosely on the method of gradient equidistribution, whereby the product of the 
chosen field scalar gradient (e.g. pressure) and grid cell dimension in the direction of the gradient 
remains constant. Grid rearrangement by this method is followed by normalization to ensure that the 
overall domain dimensions are retained. Since cell vertices are not restricted but allowed to move quite 
independently of each other, highly skewed grids can result under certain conditions; to avoid this, the 
grid is then processed in a patch-wise manner through an iterative Laplace-like solver that promotes 
orthogonality. Boundary points are restricted to move along aerodynamic surfaces on predefined 
bicubic splines to ensure that surface integrity is not compromised. The technique was developed and 
tested as a modular attachment to the commercial CFD code PHOENICS, although it is not code- 
specific. The module can also operate independently, requiring as input the original curvilinear grid 
and the scalar field upon which adaption is to be based. 
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with normal or oblique shocks, in several flow situations such as a supersonic wedge cascade, a 
missile, a converging-diverging nozzle, an aerofoil, etc. 

PRINCIPLES OF GRID ADAPTION 

The basic concepts underlying grid adaptation in CFD are quite clear. Starting from a suitably chosen 
grid, a solution of the flow field is obtained and then this solution is used to compute a new grid on 
which the flow field is recalculated. The process is repeated many times in a given simulation until 
convergence is reached. The criteria governing grid movement need to be carefully examined to ensure 
that the additional overheads entailed in grid and geometry recalculation are justified in increased 
solution accuracy or perhaps increased flow field spatial resolution. The principle of cell 
equidistribution is adopted in this implementation, where the new cell dimensions are made inversely 
proportional to local field gradients (see e.g. References 12 and 13). 

It should be recognized that the techniques used in unstructured finite element (FE) codes for this 
are quite unsuitable for use in structured (or even block-structured) control volume (CV) 

CFD codes. Grid freedom is restricted by the structuredness, since cells have their neighbours 
predefined at the onset and grid lines have to be continuous throughout the computational domain, 
starting at one boundary and terminating at the opposite one. Structured CV Navier-Stokes codes are 
used almost exclusively in the U.K. aircraft industry for flow situations where viscosity is important or 
alternatively where large portions of the flow field are turbulent (e.g. the flow around a V/STOL 
aircraft in hoverI4). It is for this reason that we are concerned with structured CV codes. 

Having said the above, it should be emphasized that although the basic concepts of grid adaptation 
are quite simple, the actual implementation of a reliable, automatic, three-dimensional technique 
within the framework of a general-purpose CFD code remains a formidable undertaking. 
The following guiding principles have been identified as prerequisites for successful implemen- 
tation: 

1. The grid density in each co-ordinate direction becomes a function of the gradient of a selected 

2. The grid is adjusted within the normal iterative sweep of the calculation at each time step, e.g. 

3. The user retains a measure of control on how, when, where and by how much the grid changes 

4. Grid lines must not collapse on to each other or cross over, or in other ways generate unsuitable 

5 .  Surface definition and integrity are not compromised at the boundaries; hence grid density is not 

6. Other 'good practices' of grid generation, i.e. orthogonality and reasonable cell aspect ratios, are 

7. The ease of use of the main CFD package is not impaired by the addition of this facility. 

flow variable (pressure, density, etc.) in that direction. 

during a SIMPLE (or its variant~) '~ type of pressure correction adjustment. 

with each adjustment. 

cells. 

only a function of flow gradient but also of geometric surface gradient. 

not adversely affected by grid movement. 

During a simulation the total number of cells in each co-ordinate direction will remain constant. This 
is an additional restriction imposed on the method by the structure of PHOENICS, which does not 
allow access to the variable indexing routines during iteration. The user is, however, free to re- 
dimension his programme and restart if necessary after adding extra cells in his grid. 
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METHOD OF IMPLEMENTATION 

The technique presented here is based on cell equidistribution, where new cell dimensions are taken to 
be inversely proportional to the flow field gradients. Hence in the x-direction this would give 

where k is a constant, Ax is the new cell dimension and 6’4lax is the gradient of 4. This simple 
equation has several obvious shortcomings which make it impractical to use. It leads to infinity as the 
gradient tends to zero, there is no correlation between the new grid and the old one, and the user has no 
control over the extent of movement of the original nodes. To overcome the first two shortcomings, 
equation (1) can be modified as 

where Axo is the original cell dimension, k, is comparable in magnitude to a&/ax and may be a 
function of &$/ax, and the subscript ‘s’denotes that the gradient is taken from a splined approximation 
of the discrete field gradient. Equation ( 2 )  possesses a number of desirable characteristics which make 
it suitable for use: 

1. As a+/ax --f 0, Ax,, -+ Ax,, as required. 
2. As aq5/ax + co, Ax,, --f E ,  where E is a small fraction of Axo. 
3. The sensitivity of the grid movement to a 4 / a x  can be adjusted by choosing the relative 

magnitude of k and &)/ax. Hence, if k zz Id4/axlrnin, maximum movement occurs up to the 
limits imposed by grid fineness, whilst if k M 16’$/ax(rnin, the maximum allowable grid 
movement would be max Ax,, = 0*5Ax,. 

In practice the actual function used will depend on the type of problem tackled. Three possible 
functions have been considered: 

In the first of these k is taken to be the average gradient along each line; in general its value will then 
differ between lines. In the second one, k is taken to be the average gradient over the entire field and in 
the last one, k is taken to be the average of the line gradient maxima averaged over all lines. The value 
of k determined by equations (3b) and (3c) applies over the whole grid, with nx, ny and nz being the 
numbers of cells in the x-, y- and z-directions respectively. 

The characteristics of these alternative derivations of k can be inferred from the definitions given. 
Equation (3a) can lead to skewed grids especially when applied to cases with oblique shocks (e.g. the 
wedge cascade). Equation (3b), which takes the field average of the gradients, leads to a value of k that 
is small compared with the gradient peak. It is therefore too sensitive for flows with shocks and can 
lead to grid collapse if used without relaxation. Equation (3c), on the other hand, gives the best grid 
control in flows with shocks, but it is rather slow since it only allows a maximum cell contraction of 
one-half the previous grid dimension in any iteration. 
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Thus equation (2) also provides some control over the amount of grid movement along grid lines by 
judicious selection of the function k,. To encourage the rapid transfer of cells from low-gradient to 
high-gradient areas of the flow field and at the same time to reduce the likelihood of cells collapsing, a 
new quantity is introduced in equation (2), the cell contraction parameter a, which can take values 
between 0 and 1. The final equidistribution law then becomes 

Examination of equation (4) shows that a, is simply a linear relaxation parameter which only allows 
a partial correction of the original grid dimension for 0 < a, < 1. Setting a, = 0 allows full cell 
contraction, whilst setting a = 1 prevents any alteration of the original cell. Hence, if we define Axmax 
and Axmi, to be the maximum and minimum allowable cell dimensions respectively, a, can be defined 
in terms of these quantities as 

SO that as Axo -+ Axmi,, a, ---f 1 and the grid becomes ‘stiff, resisting any further change; if, on the 
other hand, Axo --f Ax,,, a, + 0 and full movement is permitted. 

Equation ( 5 )  can be applied successively in the x-, y- and z-directions along each grid line to adapt 
the grid in three dimensions. Its behaviour is not dissimilar to that of an earthworm which proceeds 
along in a series of contractions and extensions of its segments; the final length of the grid line adapted 
will be shorter than the original and each line therefore needs to be expanded or normalized by 
multiplying every cell in it by the overall contraction ratio before proceeding to the next line. 

Although the equidistribution equation (5) has been chosen by the authors as the most efficient for 
this implementation, other control functions are possible, e.g. those given in Figure 1 (Wl-W9), some 
of which are reproduced from Reference 13. Notable among these are higher-order spatial gradients of 
the field variable q and the term in the square root, which are intended to account for grid curvature. 

In the adaptive process, boundary vertices are treated in the same way as internal ones, with the 
difference that points move not in the co-ordinate direction but along the boundary surface. Certain 
boundary points on the surface are treated as ‘fixed’; their position in the co-ordinate space must not be 
altered by grid movement; however, their grid index is allowed to vary. Such points act as markers 
which usually define positions of physical discontinuity along the boundary. The grid is allowed to 
progress through the markers, with the grid point closest to a marker being captured at the end of the 
move. Fixed points are also conveniently used to divide the mesh into subdomains (or patches); see e.g. 
Figure 2. These subdomains can then be used to perform a special action on part of the grid, such as 
orthogonalization, by solving a Laplace link equation for the internal vertex co-ordinates. Similar 
precautions need to be taken where solid obstacles are present within the computational domain. The 
grid is allowed to move through the obstacle as the flow surrounding it dictates, without altering its 
geometrical definition. 

In summary, the adaptive process proceeds in the following manner. 

(i) Adapt the grid in the main flow direction. 
(ii) Normalize co-ordinate lines to the original length. 
(iii) Slide boundary points along the bounding surface, following splines. 
(iv) Re-index boundary points as they slide across geometric patches. 
(v) Repeat (i)-(iv) in the other two directions (optional) or continue. 
(vi) Orthogonalize the grid by solving a Laplace equation for the transverse grid co-ordinates in a 

patch-wise manner (optional). 
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* Equi-distribution: 

w5= I .  , d 4 1 . 0 0 1 1 ~ 1  
ds ds 

w2= 1 . l f l  

w4= Iql 
ds 

W6= I .  ,!?!I 
ds 

* A combination approach: 

alpha( LAPLACE) + beta(POISS0N) + gamma(EQU1) = 0 

Figure 1. A collection of equidistribution weighting finctions 

SUPERSONIC F 

Lines of interest 

Fixed points of interest 

Default movement boundary conditions 
Figure 2. Regions of interest in a grid to be adapted 
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(vii) Proceed with the flow field solution until reasonable convergence is achieved. 
(viii) Spline scalar field gradients and return to (i) until the grid stops changing. 
(ix) In transient simulations, proceed to the next time step and repeat. 

TEST COMPUTATIONS 

A series of test examples exemplify the use of the adaptive technique developed. The list given in Table 
I includes subsonic, transonic and supersonic cases. 

Table I. Test cases 

Case Description Comments 
~~~~ ~ ~~ ~ 

1 Wedge cascade Supersoniclinviscid 
2 Converging-diverging Lava1 nozzle Transonic 
3 Missile nose-cone Supersonic 
4 Flow through a ball-valve Subsonic 
5 Cubic ‘hill’ Potential flow 
6 High-speed aerofoil Transonic 
I Flow over a vertical plate Subsonic 

In all cases except the last, the field pressure was used as the controlling variable in the adaptive 
process. In case 7, the flow over a vertical plate, the velocity component in the main flow direction was 
chosen instead. In general the choice of variable will depend on the type of problem being solved. 

The geometry outline of all test cases is given in Figure 3 and a brief description of each follows. 

------- r -I 

Figure 3. Geometry outline of test cases 
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1. Supersonic wedge cascade 

This case is based on a PHOENICS library example. The flow considered is that through a cascade 
of wedges (see Figure 4) with an inlet Mach number of 3.0 and completely supersonic flow. An 
oblique leading edge shock reflects off the pressure surface of the wedge to be exactly cancelled at the 
upstream corner, giving a uniform parallel flow through the two surfaces. The flow then expands off 
the downstream comer and exits through the blade row, where two compression waves are formed at 
the trailing edge. Cyclic boundary conditions are applied upstream and downstream of the cascade. 

The exit boundary condition is one of fixed pressure according to the post-expansion pressure 
calculated from gas dynamic theory; this neglects the presence of trailing edge shocks. This is only an 
approximate boundary condition, since the flow is hyperbolic, but sufficient for our purposes. 

Figure 4(a) shows the initial coarse grid for this problem, produced by simple transfinite 
interpolation, and the inlet condition. Figure 4(b) shows the resulting pressure distribution after 
solution. The leading edge shock is shown quite clearly as a concentration of isobars. The reflected 
shock again is marked by isobars under the pressure surface of the adjacent aerofoil. Figures 4(c) and 
4(d) show successive modifications of the grid caused by pressure gradients. The ‘raw’ move resulting 
from the application of the equidistribution method is shown without smoothing or correction for 
orthogonality. Grid lines are correctly attracted by the strong leading edge shock, but only mildly 
modified by other weaker features. Furthermore, the grid has become skewed in the region of interest. 
Figure 4 has been inserted to show that (a) the raw move alone can lead to unsuitable grids and (b) 
since the method adopted does not add more cells to the domain but simply redistributes the existing 
ones, an initially fine grid is desirable. 

Figures 5 and 6 are for the same case but with a finer grid and Laplace-type orthogonalization. The 
grid development history is shown in a succession of plots. Grid adjustment takes place at a frequency 
of 10 flow field iterations. The grid and solution converge after about 300 iterative sweeps. A gradual 
cell enrichment process takes place in areas of rapid pressure variation, as a consequence of which the 
leading and reflected shock waves are well defined (Figure 6). In addition, the grid is much smoother 
and mostly orthogonal. 

2. Transonic Lava1 nozzle 

This case concerns plane, transonic flow through a convergent-divergent nozzle operating under 
design conditions. The nozzle geometry corresponds to a linear Mach number distribution as predicted 
by one-dimensional gas dynamic theory. 

The inlet conditions are prescribed total pressure Po and total temperature To at a Mach number of 
0-5. The design outlet Mach number is 2.0, for which PexlPo,lls5in = 0.1278. The exit boundary 
condition corresponds to a fixed pressure at the expected nodal Mach number. For values of P,, greater 
than the design value the flow becomes subsonic through a normal shock compression. The shock 
position can be obtained analytically as a function of pressure ratio; in the case depicted, the shock 
occurs at 60 per cent chord. 

Figure 7 shows the grid within the nozzle (only half modelled by symmetry) as it develops during 
adaption. As expected, the originally uniform grid converges towards the shock position; it is prevented 
from collapsing there by a user-defined minimum cell threshold. The grid is also modified in the throat 
region, where grid lines follow closely the shape of pressure contours (see Figure 9). Figure 8 shows 
the pressure distribution along the nozzle centreline as it varies with each grid adaption; the shock 
progressively sharpens with each move. 

In order to see the effectiveness of the adaptive process in capturing the shock discontinuity, the 
pressure distribution is compared against that of the original grid and also against a calculation 
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* Supersonic wedge cascade - coarse grid 
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Figure 4. Wedge cascade: come grid--(a) initial grid; (b) resulting pressure; (c) moved grid no. 1; (d) moved grid no. 2 

employing a shock-capturing schemeI6 in Plate 1. The closely packed isobars around the 60 per cent 
chord position mark the presence of a shock. This is considerably smeared in the original grid (Plate 
la) owing to simple upwind differencing. The introduction of a shock-capturing scheme (which, once 
a shock discontinuity is detected, prescribes the post-shock density to be that derived analytically, 
given the upstream conditions) sharpens the shock considerably (Plate lb) but introduces solution 
convergence difficulties. Finally, the adaptive solution provides the sharpest discontinuity (Plate 1 c) 
and requires fewer iterations than the other two methods. The difference can be seen more clearly in 
Figure 9, which depicts the pressure distribution along the nozzle centreline. 

3. Missile nose-cone 

The third case is axisymmetric and concerns the external flow past the front end of a supersonic 
missile featuring a complex cone nose section. The grid is initially uniform, with cross-streamlines 
being straight. The inlet velocity is prescribed at the upstream boundary, no-slip boundary conditions 
are assumed at the missile surface and the remaining boundaries are at a constant pressure. 

Figure 10 shows the grid at two stages of adaption. Grid lines are bunched together in two distinct 
regions, one at the leading edge and the other just ahead of the cylindrical main body of the missile. 
Furthermore, the grid lines in these two regions incline with the flow to define two distinct cones. The 
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Supersonic wedge cascade - fine grid * Supersonic wedge cascade - fine grid 
- (stan,10.20) 

(a) 

- (30.40.50) 

(d) 

Figure 5. (a-f) Wedge cascade: fine grid history 

* Supersonic wedge cascade - fine grid 
- (60.70.80) 

* Supersonic wedge cascade - fine grid 
- (90.100) 

Figure 5. (g-k) Wedge cascade: fine grid history 



Plate 1. Lava1 nozzle: pressure fields for 
(a) standard, (b) shock capturing, and 

(c) adaptive methods 

Plate 2. Missile nose-cone: contours of pressure 

Plate 3. Ball valve: contours of pressure 



Plate 4. Cubic hill: contours of pressure Plate 5.  Vertical plate: grid before and after adaption 
including pressure fields 

Plate 6. Vertical plate: velocity vectors and 
re-attachment streamline 
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u 
Figure 6 .  Wedge cascade: fine grid pressure field 
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Figure 7. (a-d) Lava1 nozzle: grid development history 
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Figure 7. (e-I) Laval nozzle: grid development history 

'RESSURE AT IY.1 AFTER (1.4.7.10) MOVES 

0.0 0.2 0 . 4  0 . 6  0 . 8  

Figure 8. Laval nozzle: pressure development history 
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6 .  E+05 

4 .E+05 

2 .  E*05 

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  

Figure 9. Lava1 nozzle: pressure distribution along central l i n e  comparison of methods 

Figure 10. Missile nose-cone: grid development history+a) initial; (b) moved 
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effect is clearly seen in Figure 10(b). Examination of the pressure field (Plate 2) shows the presence of 
two oblique shock waves separating alternating regions of low and high pressure. 

4. Flow through a ball-valve 

Again this is an axisymmetric problem, although the flow is now confined. The large blockage 
defining the inner boundary controls the flow through the valve by being moved axially. It is desirable 
to reduce head losses in such devices by preventing flow separation. Although this is a low-speed 
example, aeronautical equivalents can be found in the design of aero-engine nacelles. 

The grid, shown in Figure 11, extends through the blocked region representing the ball. After a 
series of adaptions, grid lines are dragged towards the area of large pressure variation and seem to 
accumulate especially around the neck of the valve housing and on the shoulder of the ball. These 
positions coincide with areas where the flow accelerates and hence the pressure is low. The complex 
pressure field is shown in Plate 3. 

5. Cubic ‘hill’ in a duct 

The simple potential flow over a surface defined by a cubic polynomial is investigated next. Figure 
12 shows the grid development history for this problem. The grid is originally uniform. As the 
computation proceeds, cells are attracted by the pressure gradient towards the maximum suction 
region, close to the position of maximum elevation. At the same time the Laplace-like solver attempts 
to draw grid lines away from the surface at the leading and trailing edges and towards it at mid-chord; 
the grid is obviously unsuitable as it stands for boundary layer studies. This case shows some of the 
weaknesses of the chosen approach. The authors are investigating alternative control hct ions which 
are more sensitive to surface curvature (see Figure 1). The pressure field for this simulation is shown in 
Plate 4. 

Figure 1 1 .  Ball-valve: grid development history 
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Figure 12. Cubic hill: grid development history 

6. High-speed aerofoil in a duct 

The hill of case 5 has been converted to a thin aerofoil by modifying the polynomial coefficients and 
simulated as a compressible flow problem. The initial and final grid distributions are shown in 
Figure 13. The grid is only mildly modified by the adaptive process. Nevertheless, the change is 
sufficient to increase the resolution of the oblique shock wave developing at the leading edge (see 
Figures 14(a) and (b)). 

7. Flow over a vertical plate 

In this case the interest lies in the separated flow region in the wake of a vertical plate. The flow is 
incompressible but viscous and turbulent. One of the problems one faces in simulating a problem such 
as this using CV techniques is numerical false diffusion-since the streamlines (or lines of mass flux) 
lie at an angle to the grid, influences propagate numerically in the cross-stream direction in a manner 
similar to viscous diffusion.' '*17 In the case of flow recirculation behind a step, false diffusion weakens 
the flow vorticity and reduces the reattachment length. High-order differencing schemes or even 
stream-directed differencing'*-20 have been used to alleviate this numerical defect. Often, however, the 
best solution is obtained by aligning the grid with the flow. This can be easily done using the adaptive 
grid facility. 

Plate 5 shows the grid before and after adaption. The axial velocity gradient is now the driving force 
behind grid movement. The grid is seen to 'bend' in the direction along the main flow direction at the 
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Figure 13. High-speed aerofoil: grid Figure 14. High-speed aerofoil: contours of pressure 

plate edge. This small alteration results in a significant change in the computed flow field; in particular, 
the position of reattachment moves further downstream, from x- toy-plate heights (see Plate 6), as less 
of the deflected flow momentum is dissipated by false diffusion. 

In all the cases described above, a field variable has been used to effect the adaption. This is not 
always necessary, as demonstrated in Figures 15 and 16, where a geometric quantity (i.e. height above 
a datum) has been used instead to modify a three-dimensional surface grid describing the intersection 
of two cylinders. The initially uniform grid has been attracted towards regions of high height gradient 
by applying one of the Wx-functions of Figure 1. For fiuther details of its full formulation and its 
application in two and three dimensions, see Reference 21. 

CONCLUDING REMARKS 

This paper has described work performed at the University of Greenwich (formerly Thames 
Polytechnic) to develop a generic adaptive grid facility for a CV-type structured grid CFD code. The 
motive behind this work was primarily to improve the shock-capturing capability of such codes, which 
are widely used for viscous compressible aerodynamic simulations without resort to expensive and 
often uncertain explicit time-marching techniques. 
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The fully automatic adaptive facility which has been created has various elements which allow the 
creation of a numerically suitable grid which is at the same time sensitive to flow variables and 
economical in use. These are as follows. 

1. The total number of cells in a single calculation remains constant; local grid refinement is by 
redistribution. This is in contrast with the practice commonly adopted by finite element workers, 
who tend to enrich the grid locally by node addition. 

2. Grid movement is by gradient equidistribution and subsequent normalization. 

3. Surface-tracking facilities have been introduced using bi-cubic splines or alternatively user- 
defined functions to ensure surface definition is not compromised by grid movement. 

4. The patch-wise use of a Laplace grid solver ensures that grids maintain orthogonality for 
numerical accuracy. However, care has to be exercised where fine grids are required close to a 
surface (e.g. for boundary layer calculations), since the Laplace solver tends to pull cells away 
from concave surfaces. 

5 .  The adaptive process is iterative and automatic. User input is restricted to the initial grid creation 

Figure 15. Cylinder junction: initial grid 
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Figure 16. Cylinder junction: adapted grid 

and to the specification of the problem geometry as a series of discrete surface patches and fixed 
points. 

6. The user can adapt the grid on any variable, enabling the application of the technique to many 
problems in a general-purpose CFD code. 

The technique has been applied to a series of test examples with interesting results. Using pressure 
or other variables as the driving field variable, shock resolution has been enhanced. Solution 
convergence has in most cases improved with grid adaptivity, since the fineness of discretization now 
reflects flow activity; this removes disproportionally large residual errors often encountered in badly 
distributed grids. In general the adaptive procedure requires the equivalent of two sweeps of the 
computational fluid dynamics code per adaption, but this can vary greatly depending on the initial grid 
distribution, the adaption variable and the choice of the adaptive control parameters. This translates to a 
modest increase in CPU time over the static solution. An unexpected outcome of this study has been 
the realization that adaptive grids can reduce false diffusion in multidimensional simulations simply by 
aligning grid lines with the local flow direction-the authors are W h e r  investigating this capability. 

Many applications not mentioned here can benefit from an adaptive grid option. Examples include 
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free surface problems, flame fronts and detonation waves in gaseous combustion, jets and shear layers, 
phase change interface tracking and many more. 

Finally it should be mentioned that the accuracy of the final solution depends to a large extent on 
how grid-independent the results are; although this may be stating the obvious, care must be exercised 
to ensure that the starting grid is fine enough for the job at hand before attempting to adapt it. 

APPENDIX: NOMENCLATURE 
new cell dimension 
original cell dimension 
new cell dimension 
minimum allowable cell dimension 
maximum allowable cell dimension 
constant 
x-direction 
dependent variable 
cell contraction parameter 
number of cells in x-direction 

nY 
nz 

number of cells in y-direction 
number of cells in z-direction 
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